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ABSTRACT

This article explored the positive effects of partial replacement of sodium nitrite by Lactobacillus plantarum on
reducing nitrite and biogenic amine content, improving color and gel structure of Chinese fermented sausages.
The results indicated that the strain had nitrate and nitrite reductase activities, which can reduce nitrate and
nitrite. And the final reduction products of nitric oxide can react with myoglobin to generate pink ni-
trosylmyoglobin (Mb(Fe?*)-NO), which can improve sausage color. Dynamic rheological test showed that the
strain improved viscoelasticity and gel properties of the samples. Low field nuclear magnetic resonance (LF-
NMR) measurement illustrated that the strain enhanced immobilised water in myofibrillar network of the
sausages. The protein gels were improved by changes of C-H stretching and bending vibrations, reduction of a-
helix and increase of -sheet and random coil in secondary structure, changes of microenvironment in tertiary
structure. Analysis of biogenic amines showed that the strain reduced risk from biogenic amines by reducing
tyramine content. Overall, our findings demonstrated that combination of L. plantarum and low levels of sodium
nitrite could be a potential strategy to produce high-quality, healthier sausage by lowering nitrite and biogenic
amine levels, improve color and gel properties of Chinese fermented sausages.

Sodium chloride (Pumbchem CID 5234)
Phenylalanine (Pumbchem CID 6140)
Trichloroacetic acid (Pumbchem CID 6421)
Acetonitrile (Pumbchem CID 6342)
Sodium thiosulfate (Pumbchem CID 24477)

1. Introduction

Chinese fermented sausages are typical meat products in China for
their unique taste, flavor and relatively long shelf life. At present, most
sausages are currently processed by natural fermentation, which is
more susceptible to the growth of pathogen (Gao, Li, & Liu, 2014).
Therefore, in order to prevent sausage corruption, adding preservatives
are considered. Among them, sodium nitrite is the common used ad-
ditive in meat products. Sodium nitrite can positively improve color,
inhibit spoilage of fermented sausages (Aquilani et al., 2018). However,
sodium nitrite poses a threat to human body health for it could form
carcinogenic nitrosamines (Kim et al., 2017). Many studies focused on
nitrite reduction or alternatives (Kim et al., 2017; Sun, Kong, Chen,
Han, & Diao, 2017). However, it is difficult to develop alternatives that
both have color cured and spoilage inhibition effects. In recent years,
studies have shown that some microorganism have color cured and
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antiseptic properties. Gotterup et al. (2007) reported that staphylococci
had nitrite reductase activities, which led to the formation of pink ni-
trosylmyoglobin (Mb(Fe?")-NO) eventually. Li, Luo, Kong, Liu, and
Chen (2016) showed that inoculation of lactic acid bacteria and Sta-
phylococcus xylosus as nitrite substitution could form red myoglobin
derivatives and inhibit spoilage bacteria in raw meat batters. Luo et al.
(2013) indicated that nitrate oxide synthase (NOS) and metmyoglobin
(Met(Fe®*)-Mb) reductase were observed in Lactobacillus salivarius H
strain, which had a beneficial effect on the color of fresh pork.

The previous studies commonly worked on the impact of nitrite
biological substitute on color cured and pathogenic bacteria inhibition
in fermented sausages (Gao et al., 2014; Gou, Liu, & Qu, 2019; Slima
et al., 2017). Gao et al. (2014) discussed effect of L. sakei C2 as starter
culture on the microbiological index, lipid oxidation, nitrite, flavor and
color of fermented sausages. The results showed that L. sakei C2 in-
creased amount of Mb(Fe?")-NO and had potential to be used in
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Fig. 1. Visible absorption spectra of extracts (a), Met(Fe®*)-Mb content (b), and nitrite residual of the three group sausages (c); activity of nitrate reductase and

nitrite reductase of the strains (d).

fermented sausages. Slima et al. (2017) assessed color, physico-che-
mical and microbiological properties of beef sausages with L. plantarum
TN8 partial replacing nitrite and indicated that incorporation of strain
TNS8 in beef sausage was benefit for healthy sausage production by
lowering nitrite levels. Gou et al. (2019) studied chromogenic me-
chanism of LAB and proved that the strain W. cibaria X31 had the
strongest NO-producing capability, which indicated that W. cibaria X31
had potential to substrate nitrite. But few were focused on the effect of
the alternatives on capability of nitrate reduction, biogenic amines
content and gel properties of the sausages.

The target of this study was to assess the positive effect of L. plan-
tarum on nitrate and biogenic amines content reduction, color and gel
properties improvement of fermented sausages. Mb(Fe®*)-NO forma-
tion, nitrate and nitrite reductase activities, nitrite residue, Met(Fe>*)-
Mb content, dynamic rheological characteristics, water distribution,
myofibrillar protein structures and biogenic amines of the fermented
sausages substituting 50% sodium nitrite with L. plantarum inoculation
were surveyed.

2. Materials and methods
2.1. Strains

L. plantarum with chromogenic and pathogenic bacteria inhibition
capacity was isolated from Chinese fermented sausages by our team in
2018 and was preserved in China General Microbiological Culture
Collection Center (certificate number: CGMCC NO. 161310) and
Fermentation Engineering Laboratory of Qingdao Agricultural
University.

2.2. Sausage manufacture

The L. plantarum cells were cultured in MRS broth at 37 °C for 24 h
and centrifuged at 8000g for 10 min, at 4 °C. The collected cells were
suspended in phosphate buffer (0.1 M, pH 7) and washed with shaking
for 5 min. Then the cells were harvested through centrifugation (8000g,
10 min, 4 °C) and continued to wash twice for later use. The
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Fig. 2. Storage modulus G’(a) and loss modulus G”(b) curves of sausages in the
dynamic frequency test.

formulation of the three group sausages were as follows: Group C1
presented the control 1 comprised 900 g/kg lean pork, 100 g/kg pork
back fat, 23 g/kg sodium chloride and 100 mg/kg NaNO,, Group C2
presented the control 2 comprised 900 g/kg lean pork, 100 g/kg pork
back fat, 23 g/kg sodium chloride and 50 mg/kg NaNO,, Group T
presented inoculated group comprised 900 g/kg lean pork, 100 g/kg
pork back fat, 23 g/kg sodium chloride, 50 mg/kg NaNO, and about 7
log CFU/g of pork with L. plantarum inoculation. After thoroughly
mixing, all the raw materials were cured at 4 °C for 24 h and then
stuffed into cellulose casings 50 g per casing (about 4 cm in diameter).
The followed process involved being fermented at 37 °C about for 3 h
until pH dropped below 5.3 with a RH between 90 and 95%, and then
ripened at 10 °C with a RH between 70 and 75% for 20 days.

2.3. Mb(Fe?*)-NO analysis

The presence of Mb(Fe?*)-NO was conducted according to the
method described by Gao et al. (2014) with slight modifications. The
minced sausage sample (10 g) was homogenized in phosphate buffer
(pH 6.0, 0.02 M) by a beating homogenizer for 2 min. After being left in
dark room at 4 °C for 1 h, the homogenate was centrifuged at 6000g for
10 min and then the supernatant was filtered by passing them through
nitrocellulose membrane (0.22 pum). The filtrate was measured from
350 nm to 700 nm with a UV-Vis spectrophotometer (TU-1810, Beijing
Purkinj General Instrument Co., LTD., China).
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Fig. 3. Distribution of T, (a) and water populations of three components (b) in
the three group sausages.

2.4. Nitrite residual

The samples (10 g) was minced and mixed with 25 mL of saturated
borax solution, then pounded in mortar. Nitrite residual was measured
using UV spectrophotometry with hydrochloride naphthodiamide ac-
cording to previous report (Zhang, Kong, & Xiong, 2007).

2.5. Nitrate and nitrite reductase activity

Nitrate and nitrite reductase activity was measured according to the
reports of Gotterup et al. (2007) with slight modifications in cell con-
centration. Nitrate reductase was determined by the accumulation of
nitrite in the system. The reaction system is 6 mL, containing 100 mM
phosphate buffer (pH 7.0), 1.0 mM benzyl viologen dichloride, 0.4 mM
NaNO; and 0.1 mL cell suspension (OD 600 = 1.6). Finally, 4.7 mM
sodium thiosulfate was added untill full discoloration of the blue re-
duced benzyl viologen was observed through assay. After centrifugation
(8000g, 3 min, 4 °C), the supernatant (0.1 mL) was mixed with Griess
reagent (0.9 mL) and reacted for 10 min, and the absorbance at 540 nm
was measured through UV-Vis spectrophotometer (TU-1810, Beijing
Purkinj General Instrument Co., LTD., China). Nitrate reductase activity
was expressed as nmol per min per ml viable cells by calculation of
absorbance change.
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Fig. 4. Raman spectrum of the three groups in the region 500-2000 cm ™! (a), in the region 1400-1700 cm ™! (b) and in the region 2700-3000 em ™! (o).

Nitrite reductase was detected by nitrite degradation in the reaction
system (6 mL) including 100 mM phosphate buffer (pH 7.0), 25 mM
glucose, 1.7% Oxyrase (v/v) and 0.1 mL cell suspension (OD
600 = 1.6). The reaction was initiated by the addition of 0.4 mM
NaNO,_ After reacting with Griess reagent for 20 min, the absorbance at
540 nm was measured through UV-Vis spectrophotometer (TU-1810,
Beijing Purkinj General Instrument Co., LTD., China). Nitrite reductase
activity was expressed as nmol per min per ml viable cells by calcula-
tion of absorbance change.

2.6. Met(Fe®>*)-Mb analysis

Met(Fe®*)-Mb content was measured according to the method of
previous report (Luo et al., 2013) with minor modifications. Minced
samples (10 g) were dispersed in 80 mL phosphate buffer (pH 6.8,
40 mM) and grinded in a mortar. The homogenate was sealed and
placed in dark room at 4 °C for 1 h and then centrifuged at 5000g for

20 min. The supernatant was harvested and filtered through ni-
trocellulose membrane (0.22 pym). The absorbance of the filtrate was
measured at 572, 562, 545 nm and 525 nm with a UV-Vis spectro-
photometer (TU-1810, Beijing Purkinj General Instrument Co., LTD.,
China). The Met(Fe®*)-Mb percentage was calculated with the formula
below:

%MetMb = { - 2.51[@) + 0.777(%) +0.8(v) + 1.098\} X100

525 525

2.7. Dynamic rheological test

Dynamic rheological characteristics were measured with a rota-
tional rheometer (MCR102, Anton Paar, Austria) according to the re-
port (Sun, Chen, Liu, Li, & Yu, 2015) with some changes. The sausage
sample with 1 mm thickness was placed between the two plates. The slit
distance was 1 mm and sealed with silicon oil. The dynamic rheological
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g

characteristics were measured from the initial temperature of 20 °C up
to 90 °C at a heating rate of 5 °C * min ~ ! and frequency was set to 1 Hz.
The corresponding storage modulus (G’) and the loss modulus (G”) were
recorded respectively.

2.8. Low field nuclear magnetic resonance (LF-NMR) measurement

LF-NMR measurement was according to Guo Liping et al. (2019)
and cylindrical sausage with diameter of 2 cm and thickness of 3 cm cut
from each sample was placed in a test tube (Volume 40 mL). Then the
tube was inserted in a NMR analyzer (NM120-040V-1, Niumag Analy-
tical Instrument Corporation, Suzhou, China). The setting parameters
were: resonance frequency was 22 MHz, a series of echoes were
3000 ms and repetition accumulations were 16 scans. Three relaxation
times (T2b, T21 and T22) and water populations (P2b, P21 and P22)
were recorded.

2.9. Raman spectroscopic analysis

The Raman spectrum was measured on a Raman Spectrometer
(DXR2xi, Thermo Fisher Scientific, Madison, America). The sausage
slice with 0.5 mm in thickness was placed on a concave slide and then
placed in a Raman Spectrometer. A 785 laser transmitter was used and
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Fig. 6. HPLC chromatograms of standard mixture (a), sample of group C1 (b),
sample of group C2 (c), sample of group T (d). Eight kinds of biogenic amines
have been marked in Fig. 6a. and the Numbers from 1 to 8 represented Tyramie,
Putrescine, Cadaverine, Spermidine, Tryptamine, Phenylethylamine, Spermine
and histamine respectively.

the measurement parameters were set as follows: laser power 21.5 mW,
exposure time 1.0000 sec, and scanning times 10,000. Baseline cor-
rection and normalization of the spectrum to phenylalanine band about
1003 cm™! were implemented. The secondary structures of muscle
proteins were investigated with percentages of a-helix, -sheet, B-turn
and random coil according to Nawrocka et al. (2017).

2.10. Analysis of biogenic amines by high performance liquid
chromatography (HPLC) analysis

The extraction and followed derivatization of biogenic amines were
carried out as described by Nie, Zhang, and Lin (2014) with minor
changes. Minced sausage sample (1 g) was homogenized with 10 mL of
5% (v/v) trichloroacetic acid solution and extracted by ultrasonic



Y. Zhu, et al.

Table 1

Content of biogenic amine in sausages, the superscripted letter a b ¢ denotes
significantly different (P < 0.05) in the same line, and A B C denotes sig-
nificantly different (P < 0.05) in the same column, and ND means this kind of
biogenic amine has been undetected.

Biogenic amine (mg/ Sausage
kg)

Group C1 Group C2 Group T
Tyramine 13.38 + 0.34"*  14.39 + 0.17** 13.26 + 0.11°4
Putrescine ND ND ND
Cadaverine 8.26 + 0.79® 6.94 * 0.26"® 10.26 = 0.56°
Spermidine ND ND ND
Tryptamine ND ND ND
Phenylethylamine ND ND ND
Spermine 1.47 * 0.06°° 1.19 = 0.04°¢ 1.50 *= 0.03°
histamine ND ND ND
Total 23.11 + 1.00° 2241 = 0.21> 25,02 * 0.48%

extraction for 30 min, followed by centrifugation at 5000g for 10 min at
4 °C. Ultrasonic extraction was performed twice and the supernatants
were then combined. The extract (1 mL) was mixed 0.2 mL of 2 M
NaOH and 100 L of benzoyl chloride. After vortexing for 20 s, it was
kept at 40° C for 30 min. Then the reaction was terminated with me-
thanol and the mixture was filtered through membrane (0.22 pm) for
HPLC.

HPLC analysis was conducted according to Hazar, Kaban, and Kaya
(2017). Syncronis C18 column was equipped in HPLC system and the
injection volume was 20 pL. The column temperature was 35° C, the
mobile phase included solvent A (90% acetonitrile, 10% 0.01 M am-
monium acetate solution) and solvent B (10% acetonitrile, 90% 0.01 M
ammonium acetate solution). The gradient elution procedure was
started at 70% A and 30% B with flow rate of 0.8 mL/min, then solvent
B was raised gradually to 70% within 38 min and maintained for 4 min.
The detection analysis was implemented at 254 nm and the biogenic
amine content was calculated by comparison with the standard.

2.11. Statistical analysis

Three replicas were for each sample and all measurements of the
replicas were performed in triplicate respectively. Statistical analyses
were implemented with SPSS Version 18.0 (IBM, New York, NY, USA)
and the experiments data was conducted with single factor analysis of
variance (one-way ANOVA) and multiple comparisons with Duncan

NaNO,

L. plantwum

{COIO" reduction colorf NO

Mb(Fe?) === \fh(Fe?)—> Mb (Fe")-NO mm)

l promoting by
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method. A probability value (P < 0.05) was accepted for the level of
significance through Duncan’s multiple range tests.

3. Results and discussion
3.1. Mb(Fe**)-NO and Met(Fe**)-Mb analysis

In meat products, myoglobin exists in four forms derivatives con-
sisting of oxy-myoglobin (Oxy(Fe>*)-Mb), deoxy-myoglobin (Deoxy
(Fe**)-Mb), Met(Fe**)-Mb and Mb(Fe®*)-NO. The characteristic pink
red color of meat products is caused by Mb(Fe?*)-NO, which has ty-
pical absorption peaks (at 421, 540 and 579 nm) different from other
derivatives (Zhang et al., 2007). In Fig. 1a, the absorbance spectra of
the three groups all showed three typical absorption peaks (at 418, 540
and 576 nm), which basically consistent with those of Mb(Fe?)-NO. So
Mb(Fe?")-NO was considered to exist in the pigments extracted from
the three groups. However, the magnitude of absorption peaks of the
group T (50 mg/kg of nitrite addition and 7 log cfu/g of L. plantarum
inoculation) was similar with the control C1 (100 mg/kg of nitrite
addition), which indicated that L. plantarum inoculation (7 log cfu/g)
might promote the formation of Mb(Fe?*)-NO and had the potential to
substitute 50% sodium nitrite. The result was similar with the previous
reports that L. sakei C2 inoculated in the fermented sausages could in-
crease the amount of Mb(Fe?*)-NO (Gao et al., 2014). Me(Fe®*)-Mb
was the oxidation products of myoglobin which had negative effect on
sausage color (Howes, Milazzo, Droghetti, Nocentini, & Smulevich,
2019). It could be seen from Fig. 1b that the Met(Fe>*)-Mb content of
group T was significantly lower (P < 0.05) than group C2, and there
was no significant difference (P < 0.05) with group C1. This illu-
strated that L. plantarum could inhibit Met(Fe3*)-Mb oxidation, and
low concentration of sodium nitrite combination with L. plantarum
achieved antioxidant effect the same as high concentration of sodium
nitrite.

3.2. Nitrate reductase, nitrite reductase activity and nitrate residual

The nitrate reductase and nitrite reductase activity were 120 nmol/
mLemin and 19.12 nmol/mLemin respectively (Fig. 1d). Hammes,
Bantleon, and Min (1990) indicated nitrate and nitrite reductase ac-
tivities of the strain might ensure the required low content of nitrate in
final products. The nitrate residual of group T was much lower than
those of the two control groups (Fig. 1c¢), which further confirmed that
the strain can reduce nitrite residual. . Since nitrite was common used

color f
Mb (Fet)-NO}

oxidation ‘o, ‘
T inhibiting
L. plantarum inhibiting T_\’ramine‘
promoting protein unfolding
hydrophobic interactions b gl stk ’

B-sheets

protein-water hydrogen bonds

viscoelasticity f

gel properties f

Fig. 7. Tentative mechanism that L. plantarum combination with low levels NaNO, improved quality and safety of fermented sausage.
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as main additives in meat products, nitrite reductase was supposed to
be a critical player to reduce the risk of nitrite. Nitrite could be de-
graded by nitrite reductase and the reduction products of NO played a
critical role to color development of the meat products. For NO is one of
the reactants in generation of Mb(Fe?™)-NO (Gotterup et al., 2007).
Hammes et al. (1990) also indicated that L. sakei and L. farciminis could
reduce nitrite to NO, which could participate in the formation of Mb
(Fe?)-NO in fermented sausages. So the L. plantarum had great po-
tential to partially replace nitrite because it promoted the production of
Mb(Fe?")-NO, reduced sodium nitrite residual and inhibited Mb(Fe?*)
oxidation simultaneously.

3.3. Dynamic rheological character

Dynamic rheological character can be used to assess formation
ability and kinetics characteristics of protein gel (Wang et al., 2017).
The moduli of G’and G” represents the elastic and viscous behaviors of
the gel, respectively (Oh, Lee, Lee, & Lee, 2019). In Fig. 2 G' and G“
character of group T showed a downward trend from 20 °C to 60 °C and
then increased slowly from 60 °C to 72 °C during heat treatment. As the
temperature continued to rise above 72 °C, G' and G” began to decrease
again. At 75 °C they decreased to the lowest point and then increased
again. The decrease of G' and G“ might be attributed to the unfolding
and denaturation of protein molecules under heating, which resulted in
weakening of ionic and hydrogen bonds (Wang et al., 2017). The rise of
G' and G” indicated that the proteins began to glue together to form gel
and a cross-linked protein gel network was formed when reaching to
the peak, so viscoelasticity reached a high point (Xue et al., 2017).
Since denaturation process could make protein aggregation and cross-
linking through active groups, the formation of stronger gel network
increased (Hu, Pereira, Xing, Zhou, & Zhang, 2017). However, the two
controls didn't show obvious gel properties. Besides, The G' and G“ of
group T were higher than the two controls from beginning to end, in-
dicating that L. plantarum improved rheological character and viscoe-
lasticity of the sausages (Sun et al., 2015). In addition, the above results
illustrated that L. plantarum enhanced gel properties due to higher G'
and G” (Kouzounis, Lazaridou, & Katsanidis, 2017).

3.4. LF-NMR

LF-NMR can reflect the changes of mobility and distribution of the
moisture inside the myofibrillar gel of sausages. Shao, Deng, Jia, Li,
Cao, Liu, and Li (2016) found that the relaxation time (T) and its cor-
responding intensity can significantly reflect the distribution of dif-
ferent water groups in meat products. In Fig. 3a, three peaks re-
presented three types of moisture in sausages. According to the previous
report, the Ty}, has been assigned to hydration water tightly combined
together with macromolecular, the T,; refers to immobilised water,
which is situated in the myofibrillar network and the T,, was on behalf
of free water outside the myofibrillar lattice (Guo Liping et al., 2019).
Top, To1 and Ty, of group T moved to high relaxation time, which in-
dicated that water hydrations of the two control groups were tighter
than group T (Shao et al., 2016). Fig. 3b showed that Py, of the group T
was significantly higher than the two controls, so the group T had much
more immobilised water in myofibrillar network. Water holding capa-
city of the products is closely related to moisture content inmyofibrillar
network (Shao et al. 2016). P55 of group T was less than the control C1,
which illustrated that group T contained relatively little free water.
Higher levels of free water might lead to food spoilage easily (Andrews
& Harris, 2000).

3.5. Protein structure based on Raman spectroscopy analysis
Fig. 4a showed a characteristic Raman spectrum (500-2000 cm ™)

of sausages and the main bands had been marked according to the re-
ports by Liu, Zhao, Xie, and Xiong (2011). Raman spectral data were
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selectively analyzed in two wavenumber scopes of 1400-1700 cm ™ (in
Fig. 4b) and 2700-3000 cm ™ (in Fig. 4c) to study protein structure.

3.5.1. Changes of C—H vibrations and amide I

The C—H fraction is a basic component of the aliphatic residues, so
C—H stretching and bending vibrations were indicator of the aliphatic
residues, which can offer value information of protein conformations
near the aliphatic residues (Xue et al., 2017). The C—H stretching and
bending vibrations are in the scope of 2800-3000 cm™' and
1440-1465 cm ™, respectively according to the reports (Liu et al.,
2011). Compared to the group C1, C—H stretching vibrations of group
C2 and group T shifted from 2928 cm ™! to 2930 and 2932 cm ™! re-
spectively (Fig. 4c), and C—H bending vibrations shifted from
1441 cm ™! to 1439 and 1443 cm ™! respectively (Fig. 4b). The shifts
might attribute that the inoculated strains caused protein unfolding and
exposure of aliphatic residues (Liu et al., 2011). The intensity of C—H
stretching and bending vibrations of group T significantly decreased
compared to group C2. The reduction might be attributed to the
strength of hydrophobic interactions around the aliphatic side chains,
which were beneficial to formation of good gel network structure (Sun,
Li, Xu, & Zhou, 2011). The data indicated that partially substituting
sodium nitrite with L. plantarum caused protein unfolding and hydro-
phobic interactions around the aliphatic residues strengthen, which
resulted in the formation of good gel network.

3.5.2. Secondary structure

Amide I bands are commonly used to study the secondary structure
of proteins, The amide I bands consist of overlapping bands in
1650-1660 cm ™!, 1665-1680 cm ', 1680 cm ' and 1660-1665 cm !
ranges, which correspond to a-helices, 3-sheets, B-turn and random coil
structures, respectively (Sheng, Wang, Huang, Xu, & Ma, 2016). From
Fig. 4a, compared to the two controls, amide I of group T inoculated
with L. plantarum shifted to higher wavenumbers (1657 cm™Y), im-
plying a-helices unfolding and increase in B-sheet and/or random coil
according to the previous report (Kang, Chen, & Ma, 2016). Quantita-
tive information about protein secondary structure estimated from the
amide I bands was shown in Fig. 5a. It could be observed that the in-
oculation of L. plantarum had significant effects (P < 0.05) on sec-
ondary structure in fermented sausages, mainly decreased a-helices
structures accompanied by increase in -sheets, B-turn and random coil
structures. The result was in agreement with the amide I spectral shifts
(Fig. 4a). The B-sheets is the base and key factor for gel formation, so an
increase in B-sheets percentage could improve gel structure of protein
(Liu et al., 2011).

3.5.3. Tertiary structure

Local microenvironments can provide tertiary structure information
of proteins, and some Raman bands including tryptophan residues and
tyrosine residues mainly indicates hydrophobic interactions among
protein molecular (Zhu, Kang, Ma, Xu, & Zhou, 2018). The tyrosine
doublet ratio (I850/1830) is usually used to determine the micro-
environment nearby tyrosine residues (Zhang, Yang, Tang, Chen, &
You, 2015). When the ratio was below 0.9, the tyrosine residues are
located in the hydrophobic environment. When the ratio is in the range
from 0.90 to 2.5, the tyrosine residues are exposed to hydrophilic en-
vironment (Liu et al., 2011). In Fig. 5b, A higher 1850/830 ratio of
group T than group C2 (P < 0.05) indicated that the tyrosine residues
of group T were exposed to hydrophilic environment and previous re-
search had the similar result in the preparation of frankfurters with pre-
emulsified soy oil (Kang et al., 2016). The result indicated that more
hydroxyl groups provided by tyrosine residues were exposed to hy-
drophilic environment (Yi et al., 2020) and resulted in generation of
moderate protein-water hydrogen bonds and decrease of protein—pro-
tein hydrogen bonds of the gel structure (Zhang, Yang, Tang, Chen, &
You, 2016).

The Raman band near 760 cm ™!

represents tryptophan residues,
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which demonstrates the stretching vibration and hydrophobicity of ring
in tryptophan residues (Song, Pan, Wu, & Ren, 2016). They could fur-
ther provide the hydrophobic interactions information of protein gel
(Wang et al., 2018). Fig. 5b showed an increase of normalized intensity
of the band in group T compared to group C2. According to Nawrocka
et al. (2017), an increase of the band intensity suggested burial of the
tryptophan residues in a hydrophobic environment and the tryptophan
residues are related to the structure of the compound. This illustrated
that more tryptophan residues were gathered in the hydrophobic en-
vironment with L. plantarum inoculation and resulted in formation of
more complex protein gel network (Nawrocka et al. 2017).

3.6. Analysis of biogenic amines by HPLC analysis

The results of the biogenic amine analysis are shown in Fig. 6 and
Table 1. According to Ezzat, Zare, Karim, and Ghazali (2015), the most
common biogenic amine intoxication is usually caused by histamine
and tyramine in fermented products. The content of histamine in food
should not exceed 100 mg/kg according 91-493-EEC of the regulation
of European Community (Li et al., 2019). And the maximum content of
tyramine in food should not exceed 800 mg/kg according to Ercan,
Soysal, and Bozkurt (2019). Fig. 6 clearly showed that only tyramine,
cadaverine and spermine were detected and no histamine was detected
in the three groups of sausages. It could be seen from Table 1 that the
tyramine contents of the three groups were all far below the specified
limit (800 mg/kg). An increase (P < 0.05) in total amount of biogenic
amine in group T was observed compared to the two controls, mainly
due to the increase of Cadaverine. However, there was no significant
difference (P < 0.05) in tyramine content between group T and group
C1, and they were both lower than group C2. From the point of safety,
partially substituting sodium nitrite with L. plantarum will reduce the
risk of tyramine caused by nitrite reduction (see Fig. 7).

3.7. Tentative mechanism of quality improvement of fermented sausage

Tentative mechanism that L. plantarum combination of low levels of
NaNO, could improve quality and safety of fermented sausage was
proposed as follows (Fig. 7): L. plantarum combination of low levels of
NaNO, synergistically improved the color of sausage by inhibiting Mb
(Fe®*) oxidation and promoting Mb(Fe>*)-NO formation. Mb(Fe?*)
oxidation inhibition was inferred from Met(Fe®*)Mb content reduction.
Mb(Fe?*)-NO formation promotion was concluded from Fig. la that
typical absorption peak of Mb(Fe?>*)-NO increased, which might at-
tribute to the nitrate and nitrite reductase activity of the strain and
resulted in NO formation. On the other hand, L. plantarum reduced risk
from biogenic amines by reducing tyramine content. Furthermore, L.
plantarum promoted the formation of gel network of the sausage by
increasing protein unfolding, hydrophobic interactions, B-sheets and
protein-water hydrogen bonds, which resulted in viscoelasticity and gel
properties increase.

4. Conclusion

In summary, L. plantarum partially substituting sodium nitrite in
Chinese fermented sausages could produce almost as much Mb
(Fe2*)-NO as the control might due to the activity of nitrite reductase
in the strain, which can reduce nitrite and the final products of nitric
oxide can react with myoglobin to produce pink Mb(Fe?*)-NO. More
importantly, the strain inoculation improved gel properties and high
viscoelasticity and these improvements might attribute to the changes
of C-H stretching and bending vibrations, reduction of a-helix and in-
crease of (3-sheet and random coil in secondary structure, changes of
microenvironment in tertiary structure. In addition, the inoculation
reduced risk from biogenic amines by reducing tyramine content. So
low levels of sodium nitrite combination with L. plantarum might have
great potential to reduce the risk of nitrite and biogenic amines,
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improve color and gel properties of Chinese fermented sausages.
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