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Abstract Background and aim: SIRT1 and PGC1a are two important genes, which play critical
roles in regulating oxidative stress and inflammation processes. The study aimed assess the ef-
fects of coadministration of omega-3 and vitamin E supplements on SIRT1 and PGC1a gene
expression and serum levels of antioxidant enzymes in coronary artery disease (CAD) patients.
Methods and results: Participants of this randomized controlled trial included 60 CAD male pa-
tients who were categorized into three groups: Group 1 received omega-3 (4 g/day) and vitamin
E placebo (OP), group 2 omega-3 (4 g/day) and vitamin E (400 IU/day; OE), and group 3 omega-3
and vitamin E placebos (PP) for 2 months. Gene expression of SIRT1 and PGC1a in peripheral
blood mononuclear cells (PBMCS) was assessed by reverse transcription polymerase chain reac-
tion (RT-PCR). Furthermore, serum antioxidant enzyme and high-sensitivity C-reactive protein
(hsCRP) levels were assessed at the beginning and end of the intervention. Gene expression of
SIRT1 and PGC1a increased significantly in the OE group (PZ 0.039 and PZ 0.050, respectively).
Catalase and hsCRP levels increased significantly in the OE and OP groups. However, glutathione
peroxidase (GPX) and superoxide dismutase (SOD) levels did not statistically change in all
groups. The total antioxidant capacity (TAC) increased significantly in the OE group
(P Z 0.009) but not in OP and PP groups.
Conclusion: Supplementation of omega-3 fatty acids in combination with vitamin E may have
beneficial effects on CAD patients by increasing gene expression of SIRT1 and PGC1a and
improving oxidative stress and inflammation in these patients.
ª 2015 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the
Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Feder-
ico II University. Published by Elsevier B.V. All rights reserved.
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Table 1 Primers used in the current study.

Primer Sequence

SIRT-1 Forward GCCGGAAACAATACCTCCAC
SIRT-1 Reverse ACACCCCAGCTCCAGTTAG
PGC-1A Forward CTTGGCAGAGTATGACGATG
PGC-1A Reverse TAGTGCAAGTAGAAACACTGC
b-actin Forward CCTGGCACCCAGCACAATGAAG
b-actin Reverse CTAAGTCATAGTCCGCCTAGAAG

490 S. Saboori et al.
Introduction

Sirtuins are a class of nicotinamine adenine dinucleotide
(NAD)-dependent histone deacetylase proteins, which can
transfer acetyl from acetyllysine residue of histones to
adenosine diphosphate (ADP)-ribose of NAD [1,2]. Sirtuins
deacetylate various substrates such as NF-kB, forkhead box
O (FOXO), PGC-1a, and peroxisome-activated proliferator
receptors (PPARs) [3]; therefore, they can influence a wide
variety of cell pathways such as apoptosis, inflammation,
and aging process and also extension of life span during
calorie restriction conditions [4e6]. Sir2a or SIRT1 belongs
to the sirtuin family and can regulate oxidative stress by
affecting p53 [7,8]. In fact, deacetylation of this tumor
suppressor by SIRT1 may have beneficial effects on cellular
senescence by inhibiting the expression of growth sup-
pressive genes involved in cellular senescence, thus
reducing oxidative stress [8e10]. PGC1a is a key regulator
of mitochondrial respiration and plays an important role in
metabolism and energy homeostasis. Furthermore, it can
increase the gene expression of antioxidant enzymes such
as superoxide dismutase (SOD), glutathione peroxidase
(GPX), and catalase. Therefore, interventions increasing
the expression of PGC1a protect the body from oxidative
stress [11]. Studies have shown that inflammation and
oxidative stress play essential roles in the pathogenesis of
cardiovascular diseases [12]. Therefore, strategies that can
regulate oxidative stress and inflammation can improve
pathologic conditions and overall health of cardiovascular
patients.

Cell culture studies have shown that omega-3 fatty
acids can elevate SIRT1 gene expression by increasing
expression, phosphorylation, and activation of AMP-
activated protein kinase (AMPK) in macrophages.
Furthermore, they can reduce the gene expression of pro-
inflammatory cytokines [13]. In fact, SIRT1 deacetylates
NF-kB after activation of AMPK and results in inhibition of
NF-kB signaling and expression of inflammatory genes
[14]. Vitamin E, as an antioxidant agent, can protect cells
from oxidative stress and increase the gene expression of
antioxidant enzymes [15]. Moreover, vitamin E can acti-
vate AMPK and therefore increase the expression of sir-
tuins [16]. Due to the anti-inflammatory and antioxidant
effects of omega-3 fatty acids and vitamin E and the po-
tential role of sirtuins and PGC1a in protecting cells from
oxidative stress and inflammation, this study was designed
to assess the effects of coadministration of omega-3 and
vitamin E supplement on SIRT1 and PGC1a gene expres-
sion as well as serum levels of antioxidant enzymes in
coronary artery disease (CAD) patients.

Materials and methods

The participants of this randomized double-blind placebo-
controlled clinical trial included 60 male CAD patients
with at least 50% stenosis in one coronary artery proven by
angiography in the past 3 months. These volunteers were
selected from the Heart Medical Center, Tehran, Iran, be-
tween June 2012 and July 2013. An informed consent was
obtained from them prior to the commencement of the
study. The study was approved by the Tehran University of
Medical Sciences Ethical Committee (ID: 23605) and
registered inwww.clinicaltrial.org (registration number:
NCT02011906). The participants were divided into three
random groups by permuted block randomization; group
1 received omega-3 and vitamin E (OE), group 2 omega-3
and vitamin E placebo (OP), and group 3 omega-3 and
vitamin E placebos (PP). The OE group received 4 g/day of
omega-3 fatty acids and 400 IU of vitamin E. The OP group
received 4 g/day of omega-3 fatty acids and vitamin E
placebo. The PP group received both omega-3 fatty acids
and vitamin E placebo softgels with lunch and dinner for 2
months. Each 1 g of omega-3 softgels contained 180 mg of
eicosapentaenoic acid (EPA) and 120 mg of docosahexae-
noic acid (DHA). Omega-3, vitamin E, and placebos were
produced by Minoo Pharmaceutical, Cosmetic and Hy-
gienic Company, Tehran, Iran. Height, hip, and waist
circumference were measured before and after the inter-
vention to the nearest centimeter, and weight was
measured to the nearest kilogram. Body mass index (BMI)
was calculated as the weight divided by the square of
height, and waist to hip ratio (WHR) was calculated as the
waist circumference divided by the hip circumference. All
patients did not consume omega-3 and vitamin E sup-
plements or fish oil in the past 3 months before starting
the study, and we preferred not to change their dietary
patterns during intervention.

In the beginning of the study and after 2 months of
intervention, blood samples of 15 ml were collected after
12e14 h of overnight fasting. For peripheral blood mono-
nuclear cell (PBMC) isolation using Ficoll separation tech-
nique, 10 mL of the blood samples was used and the
remaining for serum separation. Blood serum was sepa-
rated by centrifugation and stored at �80 �C until use. RNA
was extracted using RNeasy Plus Mini Kit and then cDNA
was synthesized using Qiagen Reverse Transcriptase Kit
(Qiagen, Germany). Real-time polymerase chain reaction
(PCR) was carried out based on the protocols described in
previous studies [17]. b-actin was used in real-time PCR as
the housekeeping gene. Primer sequences used in real-
time PCR are described in Table 1. Serum levels of total
antioxidant capacity (TAC) was assessed using 2,20-azino-
bis3-ethylbenzthiazoline-6-sulfonic acid (ABTS) [18].
Catalase activity was assessed according to Hugo Aebi’s
method [19]. Serum levels of GPX and SOD were assessed
by the methods prescribed by Paglia et al. and Sun et al.,
respectively [20,21]. Statistical analysis was carried out
using SPSS Software v.18. Data were shown as mean � SE



Effects of omega-3 and vitamin E on SIRT1 and PGC1a gene expression and antioxidant enzymes in CAD patients 491
(standard error). The KolmogoroveSmirnoff test was used
for determining normality of the parameters. One-way
analysis of variance (ANOVA) test was used to compare
the mean of the variables between the groups and paired
t-test for comparison between groups before and after the
supplementation. A P-value of �0.05 was considered sta-
tistically significant.
Results

Sixty-five male CAD patients initially participated in the
current study; five of them discontinued the supplement
consumption due to personal reasons and hence were
excluded from the study. Therefore, at the end of inter-
vention, the patients (total: 60) were placed in three
groups as follows: OE: 21, OP: 20, and PP: 19. No statisti-
cally significant differences were observed between the
mean values of patients’ age and their disease duration
within the groups at the beginning of the study (P Z 0.079
and P Z 0.299, respectively). Table 2 shows the baseline
and post-intervention anthropometric parameters of the
patients. No significant differences were observed be-
tween the anthropometric parameters within the various
groups at the beginning of the intervention. Neither
omega-3 nor omega-3 and vitamin E supplementation had
significant effects on anthropometric parameters. Table 3
describes dietary intakes of the study groups at the
beginning and end of the intervention based on their recall
analyses. As shown, no significant differences in energy
and macronutrient intakes were observed between the
study groups at the baseline and end of the intervention.
Furthermore, no statistical differences were observed be-
tween dietary intakes of vitamin E and fatty acids in the
study groups during the 2-month intervention. Patients in
Table 2 Anthropometric parameters of the study groups before and after

Treatment group OP (n Z 20

Height (cm) Baseline 169.04 � 1
Weight (kg) Baseline 79.95 � 2.6

Post-intervention 80.13 � 2.7
difference 0.18 � 0.33
P-value# 0.591

BMI (kg/m2) Baseline 27.95 � 0.8
Post-intervention 28.00 � 0.8
difference 0.05 � 0.12
P-value# 0.687

Waist circumference (cm) Baseline 98.72 � 2.1
Post-intervention 98.30 � 2.0
difference �0.42 � 0.
P-value# 0.359

Hip circumference (cm) Baseline 101.12 � 1
Post-intervention 100.75 � 1
difference �0.37 � 0.
P-value# 0.481

WHR Baseline 0.97 � 0.01
Post-intervention 0.97 � 0.01
difference �0.001 � 0
P-value# 0.850

OP, omega-3 fatty acid and placebo; OE, omega-3 fatty acid and vitamin E
waistehip ratio; *mean � SE; *ANOVA; #paired T-test.
all groups did not change their dietary patterns during the
intervention.

Serum antioxidant enzymes and high-sensitivity C-
reactive protein

As shown in Table 4, omega-3 alone and a combination of
omega-3 and vitamin E supplementations significantly
increased serum levels of catalase and decreased high-
sensitivity C-reactive protein (hsCRP). Omega-3 and
vitamin E supplementation increased serum level of GPX,
but it was not statistically significant (P Z 0.086).
Furthermore, TAC increased significantly in the OE group
(P Z 0.009) but not in the OP and PP groups.

Gene expression findings

Results of this study showed that the gene expressions of
SIRT1 and PGC1a based on 2�DDct calculation were statis-
tically different between the study groups (P Z 0.039 and
P Z 0.050, respectively). Post hoc analysis (Tukey’s test)
revealed a significant difference between the gene ex-
pressions of SIRT1 and PGC1a in the OE and PP groups
(P Z 0.037 and P Z 0.043, respectively) but not in the OP
and PP groups. Apparently, omega-3 in combination with
vitamin E supplementation can increase the expression of
SIRT1 and PGC1a genes in CAD patients (Table 5).

Discussion

The current study was the first to investigate the effects of
nutrients on gene expression of SIRT1 and PGC1a in
humans. We used PBMCs of CAD patients for studying the
effects of omega-3 and vitamin E on gene expressions
the intervention.

) OE (n Z 21) PP (n Z 19) P-value*

.36 170.32 � 1.19 170.92 � 1.58 0.623
8 78.54 � 2.17 78.35 � 1.87 0.864
0 78.85 � 2.14 79.23 � 1.82 0.916

0.30 � 0.30 0.88 � 0.40 0.322
0.335 0.139

3 27.08 � 0.70 26.85 � 0.61 0.530
1 27.17 � 0.66 27.14 � 0.58 0.616

0.09 � 0.10 0.29 � 0.13 0.318
0.370 0.170

1 95.76 � 1.58 96.18 � 1.88 0.479
1 95.64 � 1.45 96.42 � 1.88 0.556
45 �0.12 � 0.53 0.24 � 0.39 0.618

0.827 0.548
.59 100.33 � 1.15 99.63 � 0.80 0.701
.42 100.78 � 1.23 99.37 � 0.83 0.644
52 0.45 � 0.54 �0.26 � 0.45 0.455

0.411 0.567
0.95 � 0.01 0.96 � 0.01 0.463
0.95 � 0.01 0.97 � 0.01 0.214

.005 0.005 � 0.005 0.005 � 0.004 0.304
0.325 0.191

; PP, omega-3 and vitamin E placebos; BMI, body mass index; WHR;



Table 3 Dietary intakes of the study groups before and after the intervention.

Treatment group OP (n Z 20) OE (n Z 21) PP (n Z 19) P-value*

Energy (Kcal) Baseline 1450.74 � 114.37 1469.10 � 93.33 1528.49 � 111.25 0.867
Post-intervention 1684.55 � 131.39 1649.48 � 122.47 1508.20 � 130.59 0.596
difference 233.81 � 169.99 180.38 � 162.53 32.36 � 173.82 0.688
P-value# 0.185 0.281 0.854

Carbohydrate (g) Baseline 231.47 � 22.93 228.44 � 16.93 264.01 � 18.52 0.800
Post-intervention 271.56 � 25.45 259.51 � 21.96 238.00 � 21.37 0588
difference 40.09 � 26.02 31.06 � 25.68 �8.01 � 30.04 0.426
P-value# 0.140 0.241 0.793

Protein (g) Baseline 62.25 � 7.75 69.64 � 8.76 62.27 � 7.71 0.770
Post-intervention 60.44 � 5.74 66.16 � 6.98 59.30 � 6.49 0.722
difference �1.81 � 10.58 �3.48 � 11.49 3.42 � 10.64 0.992
P-value# 0.866 0.765 0.751

Fat (g) Baseline 33.05 � 2.79 33.45 � 2.96 35.08 � 3.82 0.895
Post-intervention 42.88 � 3.75 41.80 � 4.10 37.01 � 3.86 0.538
difference 9.82 � 4.97 8.34 � 5.28 1.93 � 5.53 0.538
P-value# 0.063 0.131

Vitamin E (mg) Baseline 2.70 � 0.55 2.72 � 0.74 2.29 � 0.65 0.427
Post-intervention 4.19 � 1.04 4.04 � 0.97 2.77 � 0.45 0.311
difference 1.48 � 1.29 1.33 � 1.35 0.48 � 0.78 0.971
P-value# 0.265 0.338 0.456

Omega-3 fatty acids (g) Baseline 0.12 � 0.03 0.13 � 0.04 0.11 � 0.04 0.963
Post-intervention 0.21 � 0.10 0.11 � 0.05 0.10 � 0.03 0.464
difference 0.09 � 0.11 �0.01 � 0.06 �0.01 � 0.05 0.570
P-value# 0.428 0.821 0.781

Omega 6 fatty acids (g) Baseline 11.47 � 0.93 10.80 � 1.17 10.89 � 1.76 0.926
Post-intervention 13.76 � 1.95 13.58 � 2.15 12.87 � 2.19 0.148
difference 2.29 � 2.21 2.78 � 2.59 1.98 � 2.91 0.534
P-value# 0.273 0.380 0.506

Saturated fatty acids (g) Baseline 8.17 � 6.28 9.73 � 1.05 10.33 � 1.19 0.333
Post-intervention 9.16 � 0.80 8.98 � 0.77 10.11 � 1.13 0.649
difference 0.99 � 1.07 �0.75 � 1.28 �0.22 � 1.65 0.643
P-value# 0.367 0.566 0.897

OP, omega-3 fatty acid and placebo; OE, omega-3 fatty acid and vitamin E; PP, omega-3 and vitamin E placebos; *mean � SE; *ANOVA; #paired
T-test.

Table 4 Serum antioxidant enzymes, TAC, and hsCRP values of the study groups before and after the intervention.

Treatment group OP (n Z 20) OE (n Z 21) PP (n Z 19) P-value*

Catalase (mg/dl) Baseline 71.35 � 2.22 64.43 � 2.16 65.00 � 2.67 0.073
Post-intervention 76.00 � 2.13 71.19 � 2.62 66.58 � 2.83 0.042
difference 4.65 � 1.74 6.76 � 1.94 2.44 � 2.16 0.303
P-value# 0.015 0.002 0.273

SOD (mg/dl) Baseline 175.05 � 25.97 139.47 � 7.46 194.85 � 26.63 0.183
Post-intervention 167.48 � 18.31 134.68 � 6.40 183.34 � 25.35 0.164
difference �7.55 � 13.11 �4.16 � 6.04 �8.94 � 7.55 0.936
P-value# 0.571 0.499 0.252

GPX (mg/dl) Baseline 1.74 � 0.65 1.70 � 0.045 1.85 � 0.056 0.163
Post-intervention 1.81 � 0.068 1.81 � 0.045 1.79 � 0.057 0.959
difference 0.068 � 0.072 0.12 � 0.065 �0.052 � 0.078 0.243
P-value# 0.353 0.086 0.514

TAC (mg/dl) Baseline 112.26 � 23.04 113.91 � 21.15 79.40 � 3.13 0.342
Post-intervention 116.30 � 22.81 119.32 � 21.07 81.88 � 3.50 0.316
difference 4.04 � 2.61 7.58 � 2.62 2.45 � 3.15 0.418
P-value# 0.138 0.009 0.446

hsCRP (mg/dl) Baseline 2.76 � 0.48 3.12 � 0.55 3.34 � 0.45 0.720
Post-intervention 1.80 � 0.18 1.60 � 0.23 3.57 � 0.64 0.001
difference �0.96 � 0.46 �1.21 � 0.48 0.23 � 0.64 0.132
P-value# 0.050 0.008 0.716

OP, omega-3 fatty acid and placebo; OE, omega-3 fatty acid and vitamin E; PP, omega-3 and vitamin E placebos; hsCRP, high-sensitivity C-reactive
protein; *mean � SE; *ANOVA; #paired T-test.
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Table 5 Gene expression of SIRT1 and PGC1a in the study groups#.

OP (n Z 22) OE (n Z 20) PP (n Z 20) P-value*

Gene
expression
of SIRT1

1.44 � 0.31 2.77 � 0.79 0.95 � 0.16 0.039

Gene
expression
of PGC1a

5.28 � 1.58 10.81 � 3.71 2.24 � 0.98 0.050

OP, omega-3 fatty acid and placebo; OE, omega-3 fatty acid and
vitamin E; PP, omega-3 and vitamin E placebos; #mean � SE;
*ANOVA; the values were reported based on 2�DDct calculation.
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because these cells can travel through blood and enter
various tissues such as the adipose tissue [22]. Further-
more, these cells can reflect the metabolic and immune
responses of adipocytes or hepatocytes to dietary in-
terventions at the level of gene transcription [23,24] and
also have critical roles in the development of atheroscle-
rosis [25]. Results of this study showed that vitamin E and
omega-3 can increase the expression of SIRT1 and PGC1a
genes in CAD patients. Previous cell culture studies have
shown that omega-3 fatty acids can increase SIRT1 gene
expression by increasing phosphorylation and activation of
AMPK, thereby resulting in the suppression of pro-
inflammatory genes [13,14]. Increase in SIRT1 gene can
also modulate endothelial nitric oxide synthase (eNOS)
and p53 activity and promote vascular function by
affecting smooth muscle cells of blood vessels [26].
Furthermore, omega-3 can increase the expression of
genes involved in mitochondrial biogenesis such as PGC1a
and also increase oxidation of fatty acids via induction of
PPARa [27e29]. Fatty acids are the primary energy source
of heart in adulthood [30,31]. Expression of PGC1a in
cardiac cells can affect a wide variety of enzymes involved
in many biological pathways such as Krebs cycle, fatty acid
oxidation, and lactate and ketone body metabolisms [32].
Therefore, PGC1a may affect cardiac cells by increasing
their efficiency of oxygen consumption and adenosine
triphosphate (ATP) production [33]. Elevation of reactive
oxygen species (ROS) levels is a common feature in car-
diovascular disease and results in endothelial dysfunction
[34,35]. Overexpression of PGC1a in endothelial cells also
decreases ROS levels by enhancing antioxidant enzymes
such as manganese (Mn)SOD, catalase, and thioredoxin
[36]. Vitamin E is a powerful antioxidant agent, and its
deficiency may aggravate oxidative stress as observed in
cardiovascular diseases. Therefore, it is plausible that
vitamin E supplementation can affect the level of antiox-
idant enzymes in CAD patients. In the current study,
omega-3 alone and combined omega-3 and vitamin E
supplementations resulted in a significant increase in
serum catalase levels. However, serum SOD and GPX levels
did not increase. Although omega-3 supplementation did
not change the mean level of TAC, coadministration of
omega-3 and vitamin E resulted in a statistically signifi-
cant increase in TAC in the OE group. In a research study,
supplementation with 400 IU/day of vitamin E for 12
weeks did not alter serum SOD levels in chronic obstruc-
tive pulmonary disease (COPD) patients [37]. Kolahi et al.
reported no significant changes in SOD, GPX, and TAC
levels in rheumatoid arthritis (RA) patients receiving
omega-3 supplements with or without vitamin E [38].
Sarbolouki et al., in their study on diabetic patients,
showed that vitamin E alone and a combination of EPA and
vitamin E increased significantly serum TAC; however,
only EPA showed significant effects on increasing levels of
SOD and GPX, and catalase levels increased only in the
group receiving EPA and vitamin E [39].

Previous studies have shown that AMPK can impose
inhibitory effects on NF-kB signaling through the induc-
tion of deacetylase activity of SIRT1 and subsequent sup-
pression of pro-inflammatory gene expression [14]. Xue
et al. have shown that SIRT1 is required for stimulating
anti-inflammatory effects of omega-3 fatty acids for
antagonizing NF-kB signaling in macrophages [13]. Several
studies have shown that omega-3 fatty acids are anti-
inflammatory agents and can reduce inflammation by
inhibiting the production of cytokines such as interleukin
(IL)-1, 1L-2, and tumor necrosis factor (TNF)-a [40e42].
Moreover, they can reduce serum CRP levels [43,44].
Vitamin E can decrease the release of interleukins such as
IL-6 and reduce serum CRP levels by lowering pro-
inflammatory cytokines such as IL-1b [45e47]. Recently,
Saboori et al. have revealed that supplementation with
vitamin E in the form of either a- or g-tocopherol can
reduce serum CRP levels significantly [48]. In the present
study, serum hsCRP levels decreased significantly in the OP
and OE groups, but the OE group experienced more
decline in serum CRP levels compared to OP. Similarly,
Ramezani et al. have reported that omega-3 alone and
combined omega-3 and vitamin E supplementation
significantly decreased hsCRP levels in CAD patients [49].
Hence, it is evident that omega-3 fatty acids in combina-
tion with vitamin E significantly reduce inflammatory
processes by decreasing CRP. To the best of the authors’
knowledge, this is the first human study investigating the
effects of nutrients on gene expression of SIRT1 and PGC1a
in CAD patients. However, further studies are warranted to
reveal the exact mechanisms by which omega-3 and
vitamin E influence these key genes in humans. In
conclusion, results of the current study showed that
omega-3 fatty acids and vitamin E supplementation
increased gene expression of SIRT1 and PGC1a in PMBCs
along with beneficial effects on some antioxidant enzymes
such as catalase and may relieve inflammation by
decreasing hsCRP levels.
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